New Acute Care Hospital and Skilled Nursing Facility

San Francisco, CA

Technical Report 1

Tim Ariosto – Structural Option

Faculty Advisor - Dr. Richard Behr October 5th 2009

Executive Summary

A thorough analysis was performed on the New Acute Care Hospital and Skilled Nursing Facility in San Francisco, CA in order to develop an understanding of how the structural system works. This analysis included a study of the structural system as shown in the structural plans, the codes used in the design of the building, as well as an analysis of the wind, seismic, dead, and live loads on the structure. Where appropriate, calculated loads were compared to those used by the designers.

The load analysis revealed that seismic loads will be the controlling lateral condition on the structure, resulting in a base shear of 1422 kips and an overturning moment of 110,750 ft-kips. The wind loads were determined to be much smaller in comparison to the seismic loads. A more in-depth analysis of the lateral system used to resist these loads will be undertaken in a future report.

After the load analysis was complete, spot checks were performed to verify the validity of the lateral loads on the structure. These spot checks indicated that the dead loads determined in this report were slightly larger than those used by the designers.

Table of Contents

Executive Summary	2
Table of Figures	4
Introduction	5
Structure Overview	6
Foundation System	6
Floor System	6
Framing System	7
Lateral System	7
Roof System	7
Connection to Existing Structure	7
Materials Used	8
Applicable Codes	9
Original Design Codes Used	9
Design Codes Used in Thesis Analysis	9
Design Loads1	LO
Gravity Loads1	LO
Snow Loads1	11
Wind Loads1	11
Seismic Loads 1	15
Spot Checks 1	L7
APPENDIX	19
Appendix A: Wind Analysis2	20
Appendix B: Seismic Analysis 2	26
Appendix C: Spot Checks	33
Composite Beam Spot Check	33
Column Spot Check	36
Composite Girder Spot Check	37
Appendix D: Plans	39

Table of Figures

Figure 1: Site View of New Acute Care Hospital	5
Figure 2: Exterior view of New Acute Care Hospital and surrounding buildings	5
Figure 3: Typical Framing Plan with columns highlighted	6
Figure 4: Typical Framing Plans with lateral system highlighted in blue	7
Figure 5: Typical connection between New Acute Care Hospital and existing structure	7
Figure 6: NS Wind Loads Diagram1	.2
Figure 7: EW Wind Load Diagram 1	.4
Figure 8: Seismic Load Diagram 1	.6
Figure 9: Interior Beam Spot Check 1	.7
Figure 10: Column Spot Check 1	.7
Figure 11: Girder Spot Check 1	.8
Figure 12: NS Buiding Section	39
Figure 13: EW Building Section 4	0
Figure 14: Typical Framing Plan 4	1
Figure 15: Typical Moment Frame Elevation 4	2

Introduction

The New Acute Care Hospital and Skilled Nursing Facility will serve as an addition to the existing Chinese Hospital located in the historic Chinatown district of San Francisco (See Fig. 1). The site lies on the north flank of Nob Hill, at an elevation of approximately 110' above sea level. Due to the slope of the site, the ground floor of the site is located partially below grade.

This new addition will be connected directly to the existing Chinese Hospital, located at 845 Jackson Street. As part of the construction of this addition, the original portion of the hospital built in 1925 will be demolished. Then the new facility,

Figure 1: Site View of New Acute Care Hospital (blue) located adjacent to existing Chinese Hospital. Photo Courtesy of Google Maps.

which has seven stories above ground and one below, be constructed with a hard connection to a previous addition built in 1975. Therefore, the precast concrete panel

exterior façade has been designed in a way that respects the 1975 design while providing a more modern look.

At approximately 92,000 SF, this new facility will provide additional patient rooms as well as well several new medical departments to serve the local community. Construction is expected to begin in 2010 and reach completion by Chinese New Year 2013.

Figure 2: Exterior view of New Acute Care Hospital and surrounding buildings

Structure Overview

The structure of the New Acute Care hospital rests on a mat foundation and consists primarily of composite steel decking with steel framing. A perimeter moment frame system is used to resist lateral loading.

Foundation System

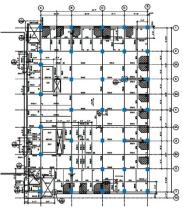
According to the geotechnical report provided by Treadwell & Rollo, the soil conditions on the site can be described as "very stiff to hard sandy clay and clay with gravel," which rests on "intensely fractured, low hardness, weak, deeply weathered shale." Because of this, the New Acute Care Facility has been designed to bear on a 36" Mat foundation. Columns rest on concrete pedestals, typically sized at 3'-0" x 3'-0". Since the base of the structure will lay below the water table, the foundation was also designed for hydrostatic uplift.

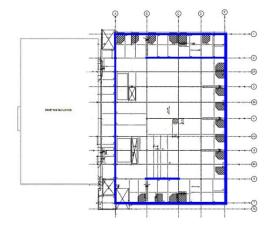
The close proximity to nearby structures, particularly the 1975 addition to the Chinese Hospital provided a challenge to the designers. Underpinning was used to maintain the foundations of existing structures on either side of the building (see Fig.2).

Floor System

The New Acute Care hospital makes use of a composite floor system using a 3" Verco W3 Formlock deck with an additional 3 ¼" of concrete resulting in a total thickness of 6 ¼". This slab then rests on W-shapes ranging from W10x12's used as beams to sizes as large as W24x207's which also serve in the buildings lateral system. The slab is reinforced at mid-span as appropriate.

There are several different bay sizes used in the New Acute Care Hospital. Larger bay typically exist on the plan east side of the building while smaller bay sizes are typically used in the western portion of the structure.




Figure 3: Typical Framing Plan with columns highlighted

Framing System

The New Acute Care Hospital uses steel columns (See Figure 3) to support the buildings gravity loads. These columns range in size from W14x445 near the base of the structure to W8x40's near the roof level. As the columns rise vertically through the structure they are spliced together, usually at a distance of 22'-0". Aside from those used in the lateral system, most of the columns are connected to beams and girders using pinned connections.

Lateral System

As lateral loads move from through the frame of the structure, they are transferred to a series of special moment frames. These moment frames are used around the perimeter of the structure. As can be seen by the blue highlighting on Figure 3, there are 4 frames running east to west and two frames running north to south. See Figure 14 in Appendix D for a typical moment frame elevation.

Roof System

The roof system is supported in a similar manner to the floors below, with a concrete filled metal deck supported by beams and girders. However, beams at this level are typically spaced much closer together, at a distance of approximately 10-12 feet. The

Connection to Existing Structure

The structure of the New Acute Care Hospital is directly connected in several places with that of the existing Chinese Hospital. This connection generally consists of a fixed connection with a seismic joint between allowing minimum movement capability between zero inches to two feet. A typical joint is detailed in Figure 5.

sizes of these roof beams generally vary from W10x12's to W24x104's.

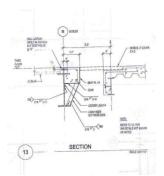


Figure 4: Typical Framing Plans with lateral system

highlighted in blue

Figure 5: Typical connection between New Acute Care Hospital and existing structure

Materials Used

Location	Weight	Strength f'c (ksi
Foundation	Normal	4000
Drilled Piers	Normal	4000
Slab-on-Grade Walls, Columns, and Piers	Normal	4000
Fill in Metal Deck and Curbs at Ground Floor	Normal	4500
Fill in Metal Deck at First Floor and Above, Topping Slab, Curbs, and Pads	Light	4000
Fill in Stair Pans	Normal	2500
Fill in Over-Excavated Areas and Conduit Encasement	Normal	1500
Structural Steel		
Туре	Standard	Grade
W-Shapes	ASTM A992	Grade 50
Other Shapes	ASTM A992	Grade 50
Plates for Built-Up Members	ASTM A572	Grade 50
Steel Channels, Angles, Base Plates, Shear Tabs	ASTM A36	
Structural Steel Plates	ASTM A572	Grade 50
Steel Bars	ASTM A529	Grade 50
Square or Rectangular Steel Tubes	ASTM A500	Grade B
Round Steel Tubes	ASTM A500	Grade C
Pipe Sections	ASTM A53	Grade B
Reinforcing Steel		
~		Crada 60

ASTM A615 Grade 60

Applicable Codes

Original Design Codes Used

In addition to the following codes, the California State Government requires that all new government and hospital buildings are approved by the Office of Statewide Health Planning and Development (OSHPD).

- 2007 California Administration Code
 - o Part 1, Title 24, CCR
- 2001 California Building Code
 - o Part 2, Title 24, CCR
 - o (1997 UBC and 2001 CA Amendments)
- 2004 California Electrical Code
 - o Part 3, Title 24, CCR
 - o (2002 NEC and 2004 CA Amendments)
- 2001 California Fire Code
 - o Part 4, Title 24, CCR
 - o (2000 UMC and 2001 Amendments)

Design Codes Used in Thesis Analysis

- American Society of Civil Engineers (ASCE)
 - ASCE7-05, Minimum Design Loads for Buildings and Other Structures
- International Building Code, 2006 Edition
- American Institute of Steel Construction (AISC)
 - Steel Construction Manual, Thirteenth Edition (LRFD)

Design Loads

Gravity Loads

Live Load (psf)		
Live Load	As Designed	Per ASCE 7
Treatment Rooms	80*+20(partitions)	60
Patient Room	80*+20(partitions)	40
Other Rooms (offices)	80*+20(partitions)	50
Storage Areas		
Fixed Racks	125	125
Mobile Racks	250	250
Corridors	100	80
Mechanical Rooms	125	-
Roof (Mech)	125	100
Roof (Other)	20*	20

The designed live loads were found to be larger than the minimum live loads specified by ASCE7-05. It is likely that these values were higher based on the more stringent requirements of OSHPD as well as the experience of the designers.

Floor Dead Loads				
Material	(psf)			
6 1/4" Concrete Deck	50			
Finishes	1			
MEP and Misc.	20			
Total	71			

Exterior Wall Dead Loads	
Material	(psf)
5" Concrete Panels	50
6" Metals Studs and Wallboard	0.38
6" Batt Insulation	0.9
Total	51.28

Partition Wall Dead Loads (psf)	
Per ASCE7-05 12.7.2	10

Roof Dead Loads	
Material	(psf)
80 Mil. TPO Roof Membrane	5.5
5/8" Dens Deck	2.5
6 1/4" Concrete Deck	60.4
Total	68.4

Dead load values were determined from a combination of sources including but not limited to ASCE7-05, design aids, and manufacturer specifications.

Snow Loads

Due to the facilities location in San Francisco, CA; snow loads were not found to be a contributing gravity load to the structure.

Wind Loads

Wind loads were calculated as prescribed by ASCE7-05 Chapter 6. Although the New Acute Care Facility is an addition to an existing structure, it was modeled as an independent structure for the purpose of this analysis. This simplification was appropriate in that it allows for the possibility of the existing Chinese Hospital structure being demolished at a later date.

Microsoft Excel was used extensively in both the analysis and determination of net wind pressures, story forces, and overturning moments. The net wind pressures comprised of pressure of the windward, leeward, side, and internal area of the building. A detailed summary of the analysis can be found in Appendix A. Once the net wind pressures were determined, the net wind loads were found. Wind loads were the largest in the NS direction resulting in a base shear of 199 kips and an overturning moment of 34,880 ft-kips (See Figure 4).

Wind Loads - NS Direction							
Floor	Height Above Ground	Story Height	Wind Pressure	Internal Pressure (psf)		Net Pressure (psf)	
	(ft)	(ft)	(psf)	(+)(Gc _{pi})	(-)(Gc _{pi})	(+)(Gc _{pi})	(-)(Gc _{pi})
Ground	0	12.5	6.91	4.15	-4.15	2.76	11.06
1	12.5	13.5	6.91	4.15	-4.15	2.76	11.06
2	26	13.5	8.18	4.15	-4.15	4.04	12.33
3	39.5	13.5	9.34	4.15	-4.15	5.19	13.49
4	53	13.5	10.19	4.15	-4.15	6.04	14.33
5	66.5	15	10.89	4.15	-4.15	6.74	15.04
6	81.5	15	11.65	4.15	-4.15	7.50	15.80
PH	96.5	18.5	12.15	4.15	-4.15	8.00	16.30
Parapet	101.5	5	12.29	4.15	-4.15	8.14	16.44
PH Roof	115	-	12.73	4.15	-4.15	8.58	16.88
Leeward	All	-	-12.79	4.15	-4.15	-16.94	-8.65
Side	All	-	-18.65	4.15	-4.15	-22.80	-14.50
	0 to 52.875'	-	-22.71	4.15	-4.15	-26.86	-18.57
Roof	52.875' to 105.75'	-	-17.24	4.15	-4.15	-21.39	-13.10
	105.75' to 134.83'	-	-14.29	4.15	-4.15	-18.44	-10.14

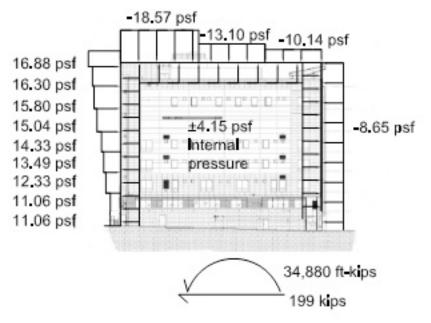
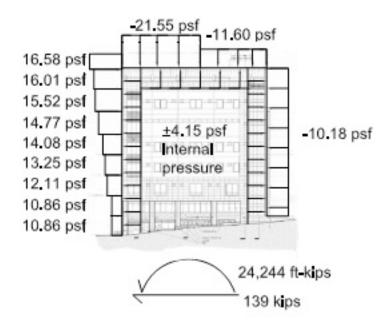



Figure 6: NS Wind Loads Diagram

Wind Loads - NS Direction							
Floor Level	Floor Height (ft)	Elevation (ft)	Story Force (kips)	Total Story Shear (kips)	Overturning Moment (ft-k)		
Ground	6.25	0	9.32	199.43	0		
1	13	12.5	19.38	190.11	2376.43		
2	13.5	26	22.44	170.74	4439.11		
3	13.5	39.5	24.55	148.29	5857.46		
4	13.5	53	26.09	123.74	6558.12		
5	14.25	66.5	28.89	97.65	6493.54		
6	15	81.5	31.95	68.76	5603.72		
PH	16.75	96.5	36.81	36.81	3551.96		
Total Overturning Moment (ft-kips)					34880.34		
Total Shear (kips)				199.43			

Wind Loads - EW Direction							
Floor	Height Above Ground	Story Height	Wind Pressure	Internal Pressure (psf)		Net Pressure (psf)	
	(ft)	(ft)	(psf)	(+)(Gc _{pi})	(-)(Gc _{pi})	(+)(Gc _{pi})	(-)(Gc _{pi})
Ground	0	12.5	6.71	4.15	-4.15	2.57	10.86
1	12.5	13.5	6.71	4.15	-4.15	2.57	10.86
2	26	13.5	7.97	4.15	-4.15	3.82	12.11
3	39.5	13.5	9.10	4.15	-4.15	4.96	13.25
4	53	13.5	9.93	4.15	-4.15	5.79	14.08
5	66.5	15	10.62	4.15	-4.15	6.48	14.77
6	81.5	15	11.37	4.15	-4.15	7.22	15.52
PH	96.5	18.5	11.86	4.15	-4.15	7.72	16.01
Parapet	101.5	5	12.00	4.15	-4.15	7.85	16.15
PH Roof	115	-	12.43	4.15	-4.15	8.29	16.58
Leeward	All	-	-14.32	4.15	-4.15	-18.47	-10.18
Side	All	-	-4.15	4.15	-4.15	-8.29	0.00
	0 to 52.875'	-	-25.69	4.15	-4.15	-29.84	-21.55
Roof	52.875' to 95.395'	-	-15.75	4.15	-4.15	-19.90	-11.60
		-	-	4.15	-4.15	-	-

Figure	7:	EW	Wind	Load	Diagram
--------	----	----	------	------	---------

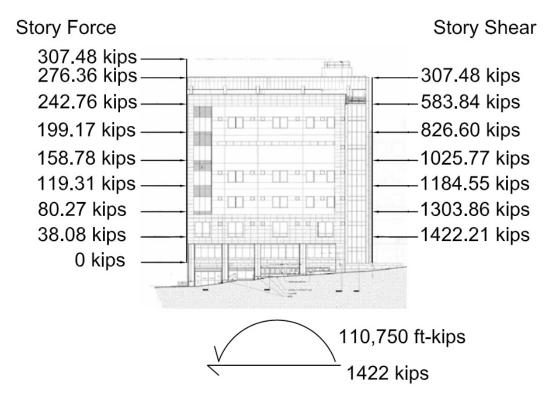
Wind Loads - EW Direction							
Floor Level	Floor Height (ft)	Elevation (ft)	Story Force (kips)	Total Story Shear (kips)	Overturning Moment (ft-k)		
Ground	6.25	0	6.48	138.62	0		
1	13	12.5	13.47	132.14	1651.76		
2	13.5	26	15.60	118.67	3085.45		
3	13.5	39.5	17.07	103.07	4071.29		
4	13.5	53	18.13	86.01	4558.29		
5	14.25	66.5	20.08	67.87	4513.40		
6	15	81.5	22.21	47.79	3894.92		
PH	16.75	96.5	25.58	25.58	2468.82		
		Total Over	turning Mo	24243.92			
		Total Shea	r (kips)		138.62		

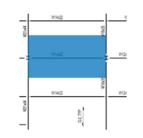
Seismic Loads

Seismic loads were determined using the Equivalent Lateral Force Method as described in ASCE7-05. In addition to this, the USGS Earthquake Ground Motion Parameter Application was used to confirm the seismic response coefficients for San Francisco's latitude and longitude (37°N, 122°W). Like the wind loads, Microsoft Excel was used extensively in the process of determining seismic loads. A detailed description of the process used can be found in Appendix B.

Building weight was determined by summing the weight of all the steel members on each floor, then adding the weight of the dead loads, 25% storage area live loads, and a partition weight of 10 psf as prescribed by ASCE7-05 §12.7.2. Since the lateral load resisting system consisted of special moment frames in both the NS and the EW direction, one analysis was performed to cover both directions. The results of the analysis can be found in the table below and in Figure 6.

Seismic Loa	Seismic Loads								
Level	Story Weight (kips)	Story Height (ft) h _x	Modified h _x ^k	w _x h _x ^k	C _{vx}	Story Force (kips) F _x =C _{vx} V	Story Shear (kips) V _x =ΣF _i	Moment Contribution (ft-kips) M _x	
Penthouse	1779.45	115	157.93	281023.70	0.22	330.85	0.00	38047.38	
Roof	1896.83	96.5	132.52	251372.15	0.19	295.94	330.85	28558.04	
6	1967.70	81.5	111.92	220230.77	0.17	259.28	626.79	21130.98	
5	1977.88	66.5	91.32	180626.71	0.14	212.65	886.06	14141.24	
4	1978.37	53	72.78	143993.48	0.11	169.52	1098.71	8984.68	
3	1993.64	39.5	54.24	108144.21	0.08	127.32	1268.23	5029.03	
2	2034.90	26	35.71	72656.99	0.06	85.54	1395.55	2224.00	
1	2009.43	12.5	17.17	34494.03	0.03	40.61	1481.09	507.62	
Ground	2007.41	0	0.00	0.00	0.00	0.00	1521.70	0	
				Effective Sei	17645.60				
				Base Shear V=C _s W (kips)				1521.70	
				Overturning	Momen	t M=ΣM _× (ft	:-kips)	118622.98	




Figure 8: Seismic Load Diagram

The seismic loads used by ARUP, the structural engineers on the project, were not available at the time of this report. However, since seismic loads are the controlling lateral force for this structure, the values calculated in this report will be confirmed prior to an in-depth analysis of the lateral system.

Spot Checks

A series of spot checks were performed in order to determine the accuracy of the gravity loads determined in this report. A detailed set of these calculations can be found in Appendix C.

The first spot check performed was on an interior beam located on the third floor along grid line 3 and between grids B and C. This beam, a W14x22, can be considered representative of an interior beam located in the central portion of the building throughout the structure.

Figure 9: Interior Beam Spot Check

The analysis performed revealed that the designed beam can carry the required load once composite action is in effect. However, the beam failed to carry the required loads that would be in place during construction before the steel and concrete are effectively working together. A W14x26 would have to be used to carry the load calculated in this study. Since the live loads selected from ASCE7-05 were generally lower than those used in the design, it can be concluded that the dead loads used in this analysis were too large by a small margin.

The next spot check I performed was on a W12x72 interior column on the 2nd floor located at grid C-3. For the purposes of analyzing this column, the load was taken to be the dead load, including self weights of the beams and framing into the column and the column self weight, and live loads. Lateral loads were not taken into account at this time, therefore beamcolumn effects were not considered.

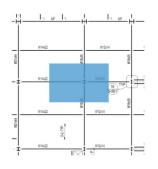
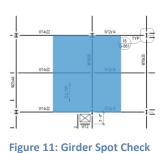



Figure 10: Column Spot Check

The analysis of the column used in the design revealed

that the axial loads could be carried by a large margin. The main reason for is that the column had additional requirements based on the lateral loads on the structure. This is particularly true since the New Acute Care hospital lies in a region of large seismic activity. Another possible reason for this difference could be that 2nd order effects were ignored in the initial column analysis since all the beam/girder connections are pinned. However, in any real structure, there is some element of fixity, which would result in higher loads on the column.

The final spot check performed was on a W18x35 girder located on the 3rd floor along grid line C between grid lines 3 and 4. The analysis showed that a larger steel section is required. A W18x46 was found to be the next size that would resist the required loads. In addition to this, an additional 10 shear studs would be required to obtain composite action.


This confirms the assertion that gravity loads, most likely

dead loads, are larger than those used by the designer. Although the gravity loads has an effect on seismic loads on the structure, this discrepancy will more than likely prove to be negligible over the entirety of the structure. However, the variations will be checked with the engineer of record prior to the next report.

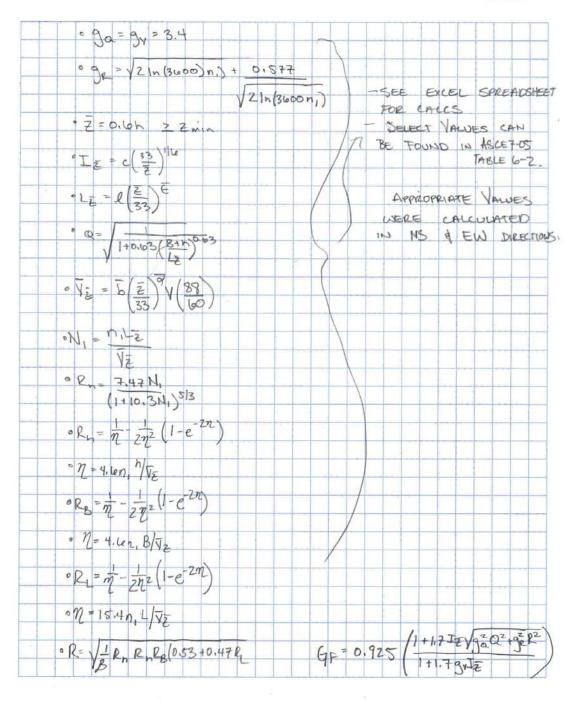
APPENDIX

Appendix A: Wind Analysis

JACOBS

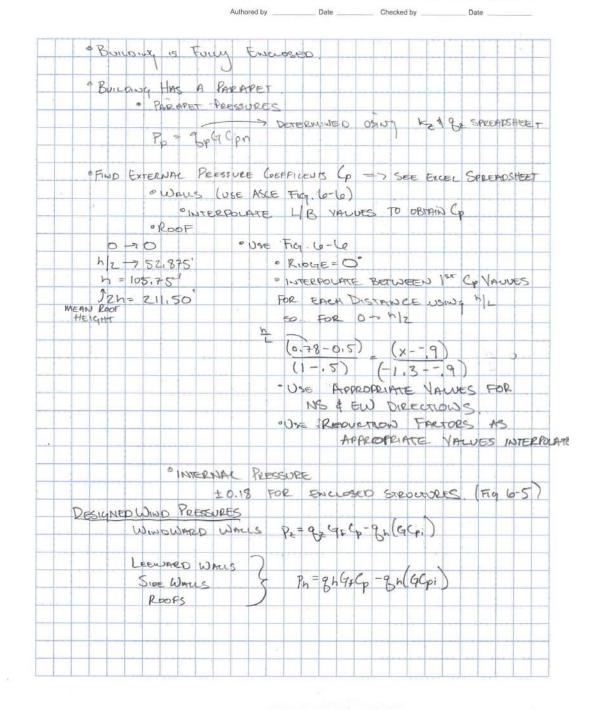
NOB HILL ELEN = 315 + ASSUME BOTTOM OF HILL IS SERLEVEL - 110' BUILDING ELEN. 110 = 0.349 = Nor TOP OF HAL

00 USE Kat = 1.0 · INTERPOLATE TABLE 6-3 TO FIND KN & KZ AT BUILDING ELENATIONS SEE EXCER SPREADSHEET


YELDCITY PRESSURES 82 = 0.00256 K2 K2T Ko Y21 Excer For GRAPHS SEEM gh= 0.002510 kg Ker Ho V2 I

CTUST EFFECT FARMES

-	11	-	+5 H		45	= (165	2 (1	OWER	Bou	DC	Cle	-17)	
			100		00			,			ASPE	7-05	1		
	nı	8	H	-	115	= 0,	867	(A-14	FOR	ni	ASEE	-18	1	\$ U C	RE FOR
			М	E	THER	- (1	BE	n. 4	1 Hz		STR	UCTI	DRE	15	FLEXIBLE



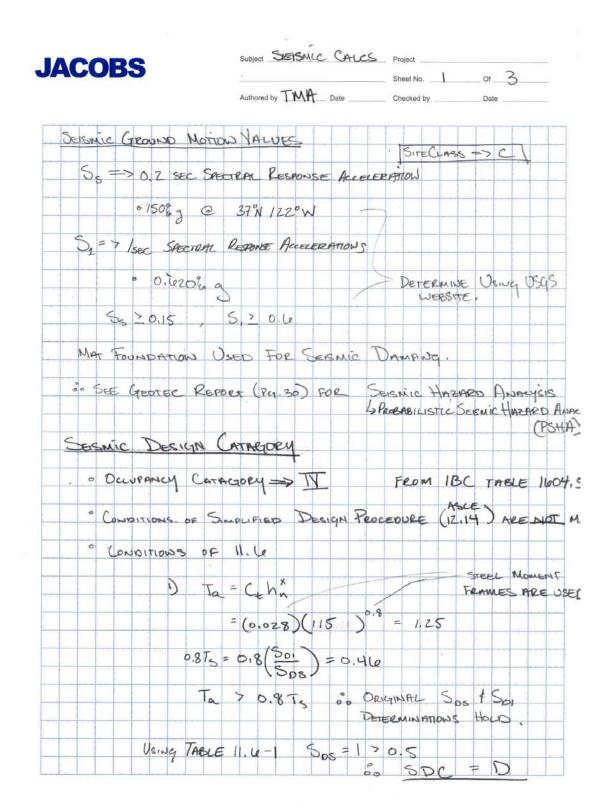
Subject WIND ANAUSIS Project Sheet No. 3 or 3

Wind Load Design Criteria				
Design Wind Speed	85 mph			
Directionality Factor K_d	0.85			
Importance Factor (I _w)	1.15			
Exposure	С			
Topographic Factor (k _{zt})	1			
	105.75			
Mean Roof Height (h)	ft			
K _h	1.27			
q _h	23.04			

Velocity Pressure Coefficents K _z and Velocity Pressure q _z						
Floor Level	Height	Kz	qz			
Ground	0	0.850	15.368			
1	12.5	0.850	15.368			
2	26	0.948	17.140			
3	39.5	1.037	18.749			
4	53	1.102	19.924			
5	66.5	1.156	20.900			
6	81.5	1.215	21.958			
Roof	96.5	1.253	22.654			
Parapet	101.5	1.264	22.848			
Penthouse	115	1.298	23.459			

Building Dimensions							
		EW					
	N-S Wind	Wind					
В	95.395	134.83					
L	134.83	95.395					
h	105.75	105.75					
B	B=normal to wind direction						

L=parallel to wind direction

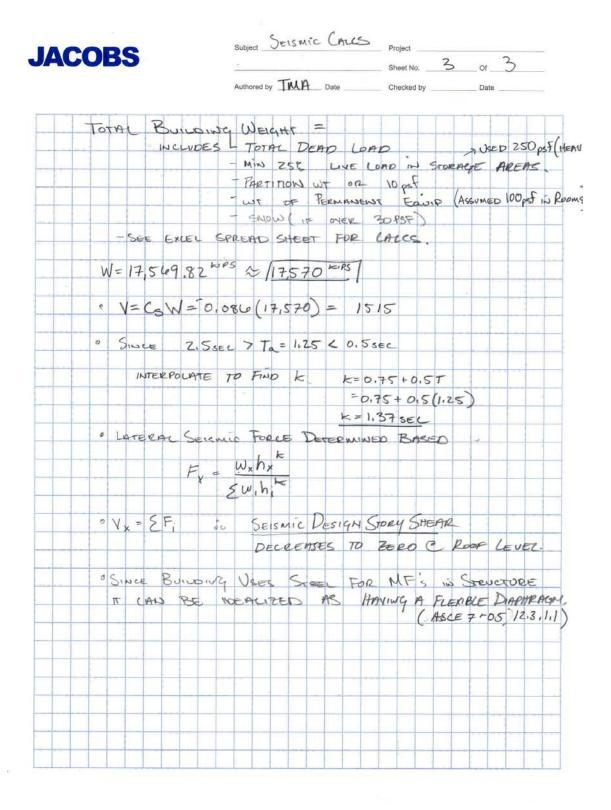

h=mean roof height

Gust Effect	t Factors G and G _f						
Term	NS Wind	EW Wind					
n ₁	0	.86					
gq	3	.40					
g _v	3	.40					
g _R	4	.15					
Z _{MEAN}	63	3.45					
с	(0.2					
I _{ZMEAN}	0.179						
L _{ZMEAN}	569	9.841					
Q	0.858	0.844					
V _{zmean}	89	.607					
N ₁	5.	469					
R _n	0.	0.048					
$\eta_{\rm h}$	4.669						
R _h	0.	191					
η_{B}	4.212	5.953					
R _B	0.209	0.154					
$\eta_{\rm L}$	19.928	14.099					
RL	0.049	0.068					
β	0.	010					
R	0.326	0.282					
G_{f}	0.899	0.883					

Combined Net Design Pressure on Parapet (lbs/ft ²)						
	windward	leeward				
GC _{pn}	1.5	-1.0				
pp	34.2725967	-22.8483978				

External Pressure Coefficents					
Wind Direction	NS	EW			
L/B	1.413386446	0.707521			
C_p (walls) windward	0.8				
C_p (walls) leeward	-0.417322711	-0.5			
C _p (walls) sidewall	-0.7				
h/L	0.784320997	1.108549			
C _p (roof)					
0-h/2	-1.12	-1.3			
h/2-h	-0.79	-0.7			
h-2h	-0.612	-			
>2h	-	-			
Reduction Factor	0.8	0.8			

Appendix B: Seismic Analysis



			Contraction of the local division of the loc	-
J		I. 10		
	-			

Subject	SEISMIC	CALLS	Project	
			1.	

SDC= 1	5					
USE T		APPROXIN	NATION O	FT	Ta=1.25	K 3,5TS= 2
						0
	Ta < C	,=1.9	GOOD .			
STRUCTU	re is r	Equiar	8. Eau	WARDNE L	ATTERAC FOR	E PROCEDUR
-	2		MAY	BE USED.		
					1 1	
EQUINE	TLENT L	ATERAL	FORCE	PROCEDU	2E	
- SPECIN	S	11-1-1-1	Ton	ITE DEDID	ALOUND	Requirered
	incourey.		ST TREAT	res uadu	RECORD	ICENNELCP
-USING	TABLE 12	.2-1				
R= No						
(1=	5.5					
-USING	S.S TABLE 1	1.5-1				
=1	1.5		T = 17 =		ANFEANCISCE	
USING	INGURE CC	-15	IL - ILSE	C FOR S	ANTRANCISCE	2
	T=1,25	< TL =	12 0	0 USE		
	0 - 5			505 -	10-1-	
	T/R		1	TRI =	0.1875	
	111) 08	THIS	(三)		
	0.55.		VALUE	> Ce.7	0.059	
	$\left(\frac{R}{R}\right)$	0.055			01036	
	(I)	-				
	-					

Ground Flo	or			
Beam	# of	Length	Unit Weight	Weight
	Beams	(ft)	(lbs/ft)	(lbs)
W12x14	1	9	14	126
W14x22	1	9	22	198
W14x22	1	10.583	22	232.826
W14x22	1	13.25	22	291.5
W24x176	1	23.8333	176	4194.661
W24x176	1	17.0833	176	3006.661
W24x176	1	18	176	3168
W18x35	1	22.625	35	791.875
W12x14	7	18.042	14	1768.116
W14x22	1	18.042	22	396.924
W12x14	2	8.71	14	243.88
W12x14	1	4.583	14	64.162
W14x22	1	10.1667	22	223.6674
W18x35	1	23.833	35	834.155
W24x176	1	23.8333	176	4194.661
W14x22	1	17.0833	22	375.8326
W14x30	1	17.8333	30	534.999
W14x22	1	11.0833	22	243.8326
W14x44	1	21.5833	44	949.6652
W18x35	2	21.5833	35	1510.831
W24x55	4	10.1667	55	2236.674
W12x14	9	10.1667	14	1281.004
W18x50	1	10.1667	50	508.335
W14x22	1	10.1667	22	223.6674
W18x50	5	23.8333	50	5958.325
W12x14	5	23.8333	14	1668.331
W12x16	7	23.8333	16	2669.33
W12x14	9	17.5833	14	2215.496
W14x22	1	17.8333	22	392.3326
W12x14	7	17.8333	14	1747.663
W12x19	2	17.8333	19	677.6654
W18x35	4	24	35	3360
W21x44	2	24	44	2112
W18x35	2	21.5833	35	1510.831
W21x44	1	21.5833	44	949.6652
W12x14	2	11.25	14	315
W12x14	3	8.708	14	365.736
W14x22	7	18.0417	22	2778.422
W12x14	1	5.625	14	78.75
W14x22	1	5.625	22	123.75

W12x14	1	9.2083	14	128.9162
W14x22	1	9.2083	22	202.5826
W14x22	1	7.944	22	174.768
W14x22	1	21	22	462
W14x22	1	25.75	22	566.5
W14x22	1	23	22	506
W14x22	1	10.333	22	227.326
W36x150	2	23.8333	150	7149.99
W24x207	1	17.0833	207	3536.243
W24x207	1	16.875	207	3493.125
W24x207	1	23.8333	207	4933.493
W24x207	1	17.0833	207	3536.243
W24x207	1	17.833	207	3691.431
W24x192	1	29.125	192	5592
W30x148	1	21	148	3108
W24x192	1	25.75	192	4944
W30x148	1	23	148	3404
W24x192	1	28.3747	192	5447.942
Total Beam	Weight (lb	s)		105627.8
Floor weigh	nt from bea	ms (psf)		8.57

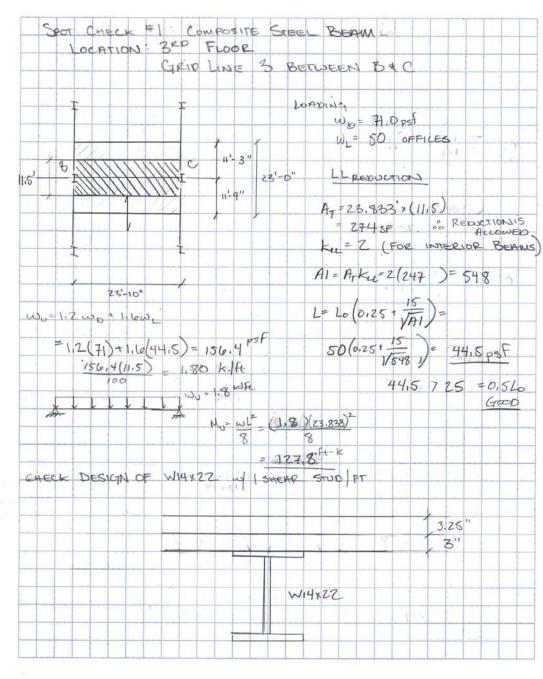
Ground Floor	[.] Column W	eight (lbs)		
Column Size	# of Columns	Floor Height (ft)	Unit Weight (Ibs/ft)	Weight (Ibs)
W14x445	10	12.5	445	55625
W14x426	12	12.5	426	63900
W14x398	2	12.5	398	9950
W12x120	5	12.5	120	7500
W12x106	2	12.5	106	2650
W12x96	2	12.5	96	2400
W12x79	1	12.5	79	987.5
Total Column	Weight (lb	s)		143012.5

Ground Floor Story Weight		
	(psf)	Weight (lbs)
Dead Loads		
Floor	71	875075
Exterior Wall	50.38	23197
Partition Wall	10	123250
Live Load		
25% in Storage Areas	250	14062.5
Weight of Permanent Equip.	100	595000
Beam Weight		105627.7861
Column Weight		143012.5
Total Story Weight (kips)		1879.23

Seismic Design Criteria		
	By Design	By ASCE 07
Z-Factor	0.4	0.4
Importance Factor (I)	1.5	1.5
R (SMRF System)	8.5	8
R (Basement Shear Wall System)	5.5	5.5
Ω_0 (SMRF System)	2.8	3
Ω_0 (Basement Shear Wall System)	2.8	2.8
Near Field Factors N _a	1	
Near Field Factors N_{ν}	1.09	1.09
Cs		0.086
Seismic Coefficent C _a	0.4	0.4
Seismic Coefficent C _v	0.61	0.61
Soil Type	S _c	S _c
S _d	-	5.5

Seismic Ground Motion Values	
S _s .2 Sec Spectral Response Accel.	1.5
S ₁ 1 Sec Spectral Response Accel.	0.62
Fa	1
F _v	1.3
S _{MS}	1.5
S _{M1}	0.860
$S_{DS} = 2S_{MS}/3$	1
$S_{D1} = 2S_{M1}/3$	0.573

Appendix C: Spot Checks


Composite Beam Spot Check

 Subject
 TECH
 Project

 Composite
 BEAM Spot CHECK
 Sheet No.
 Of

 Authored by
 TMA
 Date
 Date

JACOE	3 5
-------	------------

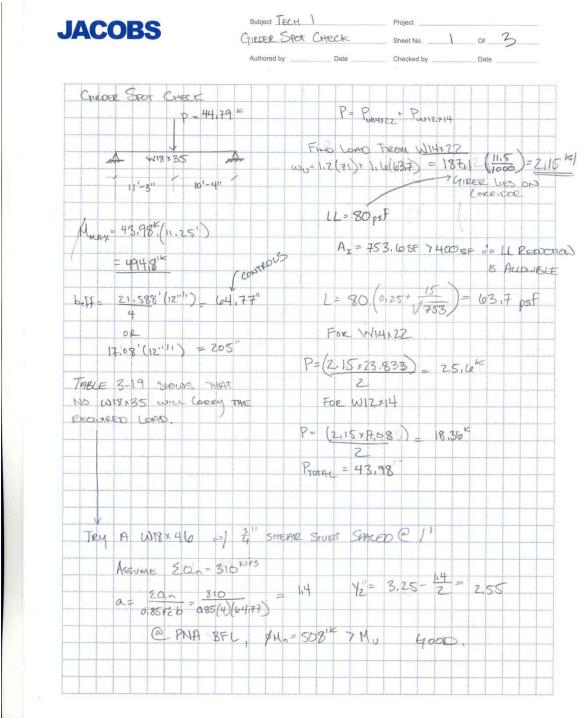
Subject TECH Project COMPOSITE BEAM SPOT CHECK Sheet No. Z OF 3 Authored by _____ Date _____ Date _____

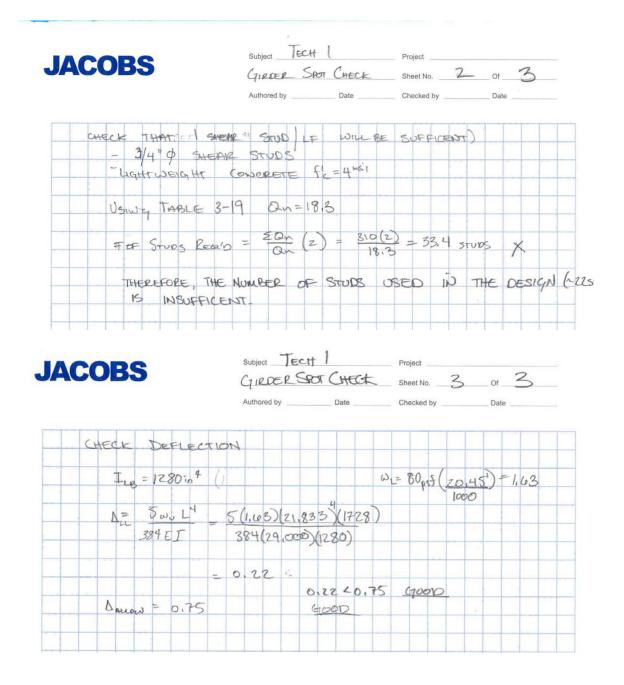
1		P	TE	EM	IN	E	EFF	ECTI	LE	FLY	AWC	E	101	HTC	_	-				ľ			_
								SPA	N		1.	225	233	1612	111	+							
					b	eff	<	4	-	=	1		4		-	= 71	.5	0	4	10	TP	o L	
					-	1	01	5PA - 44 R_							1					-	SIL		
								DISK,				-				1.1					1		
																1							
					2	1	10					-1											
						15																	
										1									Dee	0.1			
CHE	ex		RE	au	JIP	en	<	TREN	CIT+	1 0	DF	BA	ARE	51	EEL	- U	NO	ER	Jen . (CONS	ST.	120	AD.
				Mu	=]	.2(71) + I.	64	0)=	14	9.2	fe-k	-									
												-		-									
						ØM	0=	125	K-K	49.2	fe	K											T BE
							P			-					ABLE	ETO	5	0990	FAC		THI	SI	ACTU
								-						-	mle	5	D.M.C	E	- Ce	sw-t	US1	E	man
							1.11								A	214	XZ	le	(1	ND=	-15	1te-	k)
Ct	HE CH	2	De	FI	FI	TID	N I	NDE	0 /	1	P.	4.70	~ 1	1	w	2-100	2	3	ÓR	5			
ALL									C I	Our	STRL												
	OM.	22	F	UL	-	NI	110		-	1		1	> 41	Opsf	(m.	5')/1	000	2		-			-
					=	<		<u>ь 1</u> 4		5	6	N.	22	722	1	770				1-			1 8
	1	D.	COV	\$2		791	4E	D	=	0	20	LL (10	600)(20	TCO	2	=	5.	1+			-
-							1		1							10)					11		
		N		-	1	-1		(23	5.83	3 7.11	2111) =	2	0.5	2-9"	-	-			-			
-		h	usi	2-0	-	154	20		3	Loc	-			01					0	-		-	-
		-				-			+-	+	-		-	+	0	.47	< (5.7	9		90	02	
			-							1			~			1			1				-
Now,	CHE	CK	-	DE	sig	NE	20	BEAN	MS	ITE	0	WDE									5.	-	
		+	-						-	-	-		-	w	Con	POSI	TE	14	CTI	OW	-	_	-
		Acre		-	1	0	- 1	31,2	aps	-	-		-				_						_
		10	UM	E	S	un	-	DUC			-		-		-								NARN
	1						8	1,2		-			- 11		-								W14×
		_	5	Qv	e 1	2	0	5/4)	71.5)	1	0.3	3		_						T		-
			2	SF	6	CC 1	0.1		100 B 100 A 100							0	-0	1.1		1			
	a=		20.8	SFE	be,	F	0.1		-	-			_		_	K	EC	UI	LE	0	10	AD	-
	a=		-						+	+	-										10		
	a=		-					3=	+	+	-	- 12	- 1	3"							10		21= 12

JACOBS

Subject TECH Project LOMPOSITE BEAM SPOT CHECKSheet No. 3 or 3 Authored by Date Checked by Date

Nou	c	HE	CK	-	THEY	41		144		DE	SIC	TNE	D	M	of		SHE	MR	S	וטד	25_	U	lort	-	
	1	3	4 5	þ	MEN	AIR_	57	UDS		PAG	EF	0	1'	INT	ERV	IAL.	s								
	-	1	iqt	ŧτν	IEI	Cytte	-	(GA)	op.	ETE. si	01	s p	ETA	r Ì	EC	< _	_ 7	0	BE	AM					-
		ll,	50	Bint	7 1	WE	nk	S	HEI	9R	ST	UD	YA	hu	ES		0	n=	17.	ZK	P				
		ħ	6	- 9	STU	DS	R	ai	> =	2	Q.V	- (2)	ł	1: 811	2(:	2	1	9.	41	ł				
		ħ	STU	os	Pe	DVI	DEI	0·	1 F	ER	L	F	•	0 2	3						ວປ	RE	D	_	
Th	ER	EFC	DEE	,	T	HE		DES	519	NE	D	B	EA	m	(A	W	1473	22	w	1	154	EMA	25	vo	1.
w	122	EI	ASIL	1	CIAN	zei	1	THE	1	AC	D	-											-		-
ECK	D	EFI	E	it	ov	.			9.1							_					-	_			
	U	inte	1 7.	ABI	E	3-	20		I	18	1 22	32	lei	4				-							
			1.		4			1		Г	-	50	(10	ŧ/.		1								
	∆=	38	4 8		_	2	1	5 (35	175	129	23	.83	131	+(17	128)	5	0,	44	in	-		-	
	A	15	0	79	in .	TH	E	Rect	ECT	¥	EQ.	, '	AL	LIM	wy.	For	2	10).	TER	10	2	Be	Aar	5	1
								10	70												-				
				-						15															-
							1	10	oD						-	-		-	_	-		_	_	_	
									-																
	_															-	_	-							
															-	-	-		+						-
				-		_																			
			_		_	-	_		_		-		_	_							_		_		


Column Spot Check



10 04440	ULATE	LOMAS	Aetin	9 0	w cou	UMN	, USE			
	- DEAD - LIVE L	LOADS	· FI PSF	11	SE LA	RISERT	MORE	(OWCEN	VATIVE	
	-LIVE L	page -	Leo PSF	- (W t	- que j	, wet			
	- ВЕАМ	WEIGHT	(ASLOWA	111.92	Disya	Siule				
				-	-1-1	N12×14	Cree	BUDOR	485,5	2
				5.825	12 18 18	2		1	-	
				7	13	7.54	(Per			
	- Corumo	WENCHT	1 I I I I I	NF	Rom	ELEL	SPREIAD	TUP L	WEIGHT	
HECK THE (-	-	-			
TREAT	COLUMN A	S BEING	TINNE	D ON	EACH	ENT				
	12		-							
LOUVMA	USED	WISY	79	3	221	BRAC	ep leve	# =	12 51	-P
		TOTAL CON	LUMN HE	IGHT =	Ct	011-	LOOPL		0.0	
		H= 23	5.2 662in4							
K=1.0					J	-y= 2	16 in 4			
NSERVATIVE		ry=	5.34			$r_{y} = 2$	30,08			
	\	1					10			
	SL - (13.5	X17") =	= 30.33				,5×12)	= 53.	11	
	14 5	134"		_	ry	-3	.05	CONTR		
F	-					-				_
4.71	E _ 4.7	1/29000	2 = 113	.47	53.11	00	INELAS	AC B	EHAVIO	2
17	7	1 30	_							
	2							-		_
Fe =	NE = T	2 29000) = 10	1.47	251	_				
	$\frac{\pi^2 E}{\left(\frac{k_{\perp}}{r}\right)^2} = \pi$	\$3.11)	-							_
								Lei		
Fep=	= 0.658 (F)	Fy =	0.658	3-1	5	0 >	40.68	C31		
			L	_	2				-	_
Nominary	STEENSETTH	OF COLU.	MA Pr	= Fer	A -	(40.6	8) 23.2)= 94	3.82	
							_			
	PPn	- 0.9(94	13.82)=	849	,438	115	~			
		10 and	1		Contraction of the local division of the loc		1 2 0	1	D.	A Loter
	Pu= 3?	30.23×	SEE 8	EXCEL	SPREA	PS HE	I TOR	LOAD	LEIE	LIMIWITI
	ppn :	30.23 >>> PJ TO BEM	P -	THE D	FSIGN	5D (OCUMN	HAS	s Moke	E

Composite Girder Spot Check

Appendix D: Plans

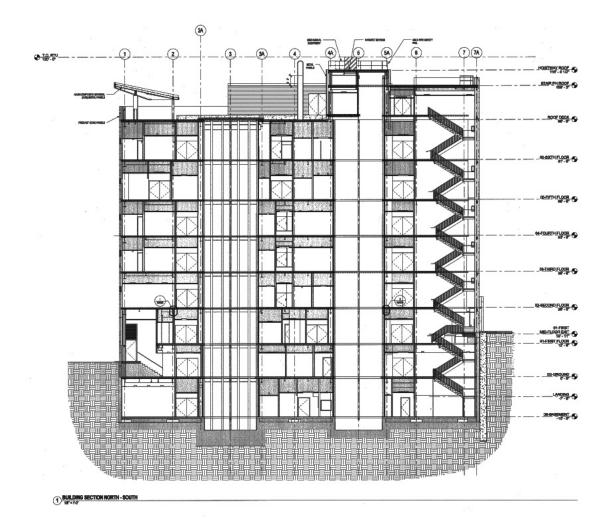


Figure 12: NS Buiding Section

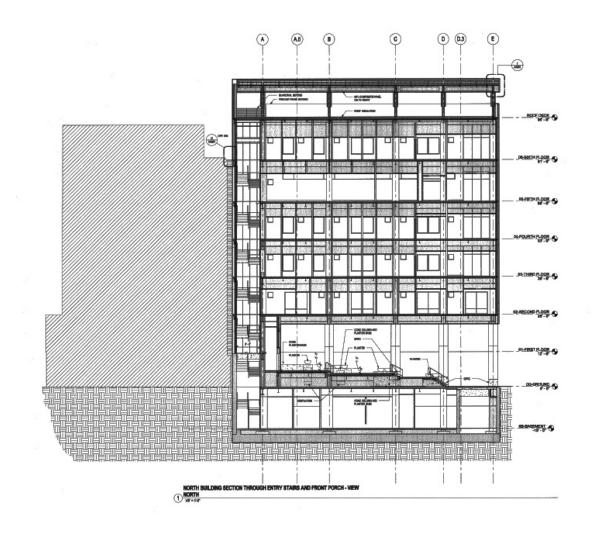


Figure 13: EW Building Section

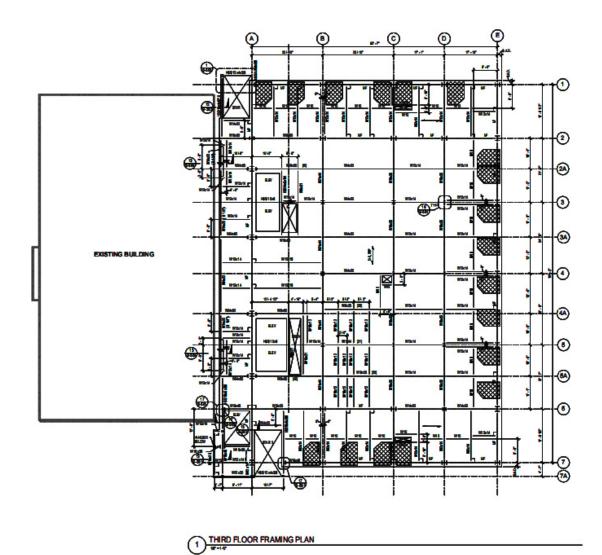


Figure 14: Typical Framing Plan

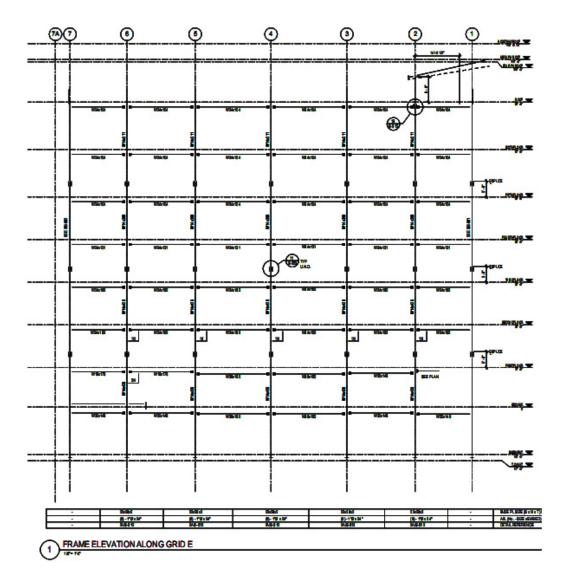


Figure 15: Typical Moment Frame Elevation